Different approximations of shallow fluid flow over an obstacle
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Three different sets of shallow water equations, representing different levels of approximation are
considered. The numerical solutions of these different equations for flow past bottom topography in
several different flow regimes are compared. For several cases the full Euler solutions are computed
as a reference, allowing the assessment of the relative accuracies of the different approximations.
Further, the differences between the dispersive shallow wWat8W) solutions and those of the
highly simplified, hyperbolic shallow watdlSW) equations is studied as a guide to determining
what level of approximation is required for a particular flow. First, the Green-Na¢Bdl)
equations are derived as a vertically-integrated rational approximation of the Euler equations, and
then the generalized BoussindgiB) equations are obtained under the further assumption of weak
nonlinearity. A series of calculations, each assuming different values of a set of parameters—
undisturbed upstream Froude number, and the height and width of the obstacle, are then presented
and discussed. In almost all regions of the parameter space, the SW and DSW theories yield
different results; it is only when the flows are entirely subcritical or entirely supercritical and when
the obstacles are very wide compared to the depth of the fluid that the SW and DSW theories are
in qualitative and quantitative agreement. It is also found that while the gB solutions are accurate
only for small bottom topographidfess than 20% of the undisturbed fluid depthe GN solutions

are accurate for much larger topograpHigs to 65% of the undisturbed fluid deptfThe limitation

of the gB approximation to small topographies is primarily due to the generation of large amplitude
upstream propagating solitary waves at transcritical Froude numbers, and is consistent with previous
analysis. The GN approximation, which makes no assumptions about the size of the nonlinearity, is
thus verified to be a better system to use in cases where the bottom topographies are large or when
the bottom topographies are moderate but the flow transcritical 1996 American Institute of
Physics[S1070-663196)01708-4

I. INTRODUCTION presence of higher-order dispersive terms whose origin lies
in the vertical acceleration, and so are termed dispersive
Shallow water equations provide useful reduced dimenshallow water(DSW) theories. Since the dispersive terms
sion descriptions of free surface flows in systems like thenave their origin in nonhydrostaticity, one might expect that
oceans and the atmosphere. In this paper we consider thregeir importance in geophysics is restricted to small scale
different sets of shallow water equations, representing differflows. A recent articlé, however, suggests that the higher-
ent levels of approximation. We compare the numerical soorder dispersive terms may be important on global scales
lutions of these different equations for flow past bottom to-also, specifically in the context of long term climate simula-
pography in several different flow regimes. In several casesions. Here the point is that even though the dispersive terms
we compute the full Euler solutions as a reference, allowingare smalll, as estimated by scale analysis, the integration time
us to assess the relative accuracies of the different approxis long. Estimates in that article suggest that the solution
mations. We also study the convergence of the results of thgajectories for barotropic flow in the ocean, one based on the
more accurate DSW theories to those of the highly simplifiedSW equations and the other on DSW equations, could di-
hyperbolic shallow water theory, as a guide to determiningverge noticeably on time scales like 30 years.
what level of approximation is required for a particular flow. The Green-NaghdiGN) equations are a particular set of
The usual shallow wate(SW) equations, familiar to DSW equations. They were first derived for one horizontal
geophysicists, can be derived from the three-dimensional Ewdimension and flat bottom assuming irrotationality by Su and
ler equations by making the hydrostatic approximation, i.e.Gardner They were independently derived in a more gen-
ignoring the vertical acceleration, and then averaging theral setting, based on assumptions about the form of the ve-
equations across the thin dimension of the flow. This correlocity in the thin (vertica) dimension for a flat bottom by
sponds to the limiiv—0, whereo (=D/\) is the shallow- Green, Laws, and Naghdiand generalized by Green and
ness or dispersion parameter, the ratio of a representatiséaghdf for a varying bottom. The same equations have sub-
average depth to the horizontal length scale of interest. Besequently been rederived by many othefsThe GN equa-
ter reduced dimensional descriptions can be derived by cortions have been used in the computation of steady wave so-
sidering the nonhydrostatic pressure contributions. These déutions of permanent formiwith no bottom topography
scriptions differ from the usual SW equations by thestudy of tidal basing, and the generation of upstream-
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vanish and the usual SW equations are recovered. As shown
later, for a nonzero value af, the DSW equations will re-
solve the discontinuities of the SW equations into trains of
oscillations. In a physically analogous situation, but in the
context of the simpler KdV equation, Lax, Levermore, and
Venakides’! have proved the convergence of tteverage
over the oscillatoryKdV solution to the solution of the non-
dispersive equation in the limit of very small dispersion.
Thus, though the DSW equations we study are nonlocal and
. have very different dynamical properties compared to the
ST e 7 usual SW equations, we use the regime diagram of the SW
] equations, Fig. 1, as a guide to choosing the parameters we
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Y HE Y E v — VT Although the question of the importance of nonhydro-
Dimensionless Ridge Height static effects in long time climate simulations is of great

FG. 1 Th e tor the hvdrostatic shall . i importance, it is beyond the scope of this paper. Here we
. 1. The regime diagram for the hydrostatic shallow water equations . . Cf

The x-axis is the dimensionless ridge height and jhexis is the undis- focus _‘?” three mtermedlate_ gogls. first, we want to evaluate
turbed Froude number. Region | is entirely subcritical, and the free surfacdh€ utility of the GN approximation for accurately represent-
dips symmetrically about the obstacle. Region IIl is entirely supercritical,ing nonhydrostatic features of shallow fluid flow over a two-
and the free surface rises symmetrically about the obstacle. In region llagimensional ridge by comparing with fuIIy nonhydrostatic

there i tream- ting hydraulic j d a stati lee-side. . : :
ere 19 an UpSIrsam-propagating ycarauic Jump and a saionarn 18 Sl Gmulations of the Euler equation€lhe geophysical coun-

hydraulic jump. In region llb, there is an upstream-propagating and a . .
downstream-propagating hydraulic jump. The parameters corresponding &@rpart of this flow would be a mesoscale atmospheric flow
the six test cases presented in this article are also shown. past a steep mountain or an oceanic flow past a seamount.
Second, considering the asymptotic dependence of the gB
theory on the nonlinearity parameter, we want to establish
propagating solitary waves by moving disturbances in con:[he reglonf' of vfatl;]dny ththde glii Sqtfjlatlon; as” an adequlzéte
nection with ships moving in a chanril. approximation of the nonhydrostatic flow. Finally, we wou

The Boussinesq equatidisre an alternate DSW theory like to understand the convergence of the DSW descriptions

and date back to the 1870s. They assume both a flat bottolf the SW description in the different regimes of Fig. 1.

and a particular balance between the nonlinearity and theh Tr;e _planhpf gur paperhis g\stollgws. ;%,tzletter illy strate
dispersion in the problemi=0(o?). Here s (=A/D) is the the relationship between the » gb, an equations, we

nonlinearity parameter defined as the ratio of the typical am]jIrSt preier];ha de_rlvatlot_n of”thesz equailr:)nsGllilsmg trt].e same
plitude of the deviation from equilibrium of the free surface approach. 1hus, In section 1l we derive the equations as

to a representative depth. The Boussinesq equations ha\‘;\evert'ically—integrated rational apprc')xi.matio.n pf the Euler
been generalized to include varying bottom topography an&quatlons and show thg further reSt”Ct'(Mta',lS n Appen-'

weak stratificatiorie.g., see WA? and Camassa and Holi dix A) of the GN equations to the gB_equanon_s. In section
Different variations of generalized-Boussine&gB) equa- Ill, we compare the GN and gB solutions against the fully
tions have been used to study shallow fluid flow over topog_nonhydrostatic Euler solutions for three different cases to

raphy (e.g., see Wu and WA or Lee. Yates and wa) In assess the accuracies of the DSW theories. In section 1V, we
fact, the r;henomenon of éolitary ,waves, propagating upSompare the SW solutions in the four different regimes of

stream of a moving surface pressure disturb&hems first Fig. 1 against the corresponding DSW solutions, and in sec-

numerically simulated using the gB equatidAsA closely tion V, we study the convergence of the GN solutions to the

related set of equations that specialize to unidirectionaﬁw solutions in the limit of very wide topographical fea-

waves, and which are valid when the flow is transcritical, areture,s' Conclusions are 'presentedlln sgctlon Vi, gnd the nu-

the forced Korteweg-de VriggKdV) equations. These equa- merical schemes are briefly described in Appendix B.

tions have also been widely used to study the same phenom-

enon, but we do not address the fKdV equations in this paper

since they are specialized to unidirectional waves, and arg. DERIVATION OF THE DSW EQUATIONS

not valid over a wide range of Froude numbers. Neither do .
. . . . . A. The Euler equations

we consider extensions of the Boussinesq equations which

use the velocity at a certain depth as a primary variabfe The behavior of the free surface of a homogeneous layer

or their nonlinear extensiors, since their primary utility ~ of fluid in the inviscid and incompressible limit is described

seems to be in fluid layers of intermediate depths, where thely the Euler equations:

have significantly improved dispersion properties.

In the flow over a two-dimensional ridge, discontinuities
appear in the SW solutions both upstream and downstream
of the ridge in the form of hydraulic jump$(regions Ila and .
lIb of Fig. 1). If the shallowness parameteris identically _
zero, the higher-order dispersion terms in the DSW equations AW+ W W=~ ; 92P—0. (1b)

1
dtU+Wf7zU=—; Vp, (13
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whereV=(d,,d,) is the two-dimensional horizontal gradi- ber to be small; considering the importance of the small
ent operatoru=(u,v) is the horizontal velocity fieldw is Froude number limit to oceanic flows, we will investigate
the vertical velocity, andl,= d,+u-V is the horizontal two- this limit in a separate article.
dimensional material time derivative. In the system of coor-
dinates usedz is in the direction of the verticak=(x,y) is
in the horizontal,n is the depth of the fluid layel is the
height of the bottom topography, atdt+ 7 is the height of
the free surface. These dynami¢pfognosti¢ equations are As far as the continuity equation is concerned, no as-
supplemented by the constraifdiagnostic relation of in- ~ ymptotics are necessary and an integration of &g from
compressibility expressed as the divergence free condition,the bottomb to the free surfacb+ 5 [along with the bound-
VUt aw=0. ) ary conditions, Eq(3a and Eq.(4)] leads to

B. The Green-Naghdi equations

The equality of the normal-velocity of the free-surface to the ~ di7=—7V -u, (8)
velocity of the fluid normal to the free-surface there gives
rise to the kinematic boundary condition,

w=dy(b+7)+u(b+7)- V(b+7), =1 fb”udz.
7 Jo

at z=(b+ n)(x,t). (39
Here we adopt the convention that if a term in round paren]NiS iS the exact vertically-averaged continuity equation,
theses is preceded by a field and not an operator, then tf@mmon to all vert|cally—_averaged shallow Wat.er equations.
field is evaluated at the location given by the term in the | The form _Of the vertlcal momentum equat;gn, E6b),
parentheses. The constancy of pressure at the free statace 91VeS US @ rational basis to expapdn terms ofo” as

whered,=d,+u-V, and

2O|?1r;fi(c)ﬂbed valug,) gives rise to the dynamical boundary P(X,2,1)=Po(%,2,t) + a2p1(X,2,1). (93)
_ _ Then from Eq.(6a), noting thatw=0(1) as a result of the
PO =po, atz=(b+n)(xD). (3b) nondimensionalization, we may expaadimilarly as
The impermeability of the bottom surface gives rise to the )
bottom boundary condition, u(x,z,t) =uo(X,z,t) + oUs(Xx,z,t). (9b)
w=gd;b+u(b)-Vb, atz=b(x.t). (4) First we consider the part of the horizontal momentum

In particular flow situations, it is possible to define an equation, Eq(6a),

average or representative defhand a typical horizontal dUg+Wd,ug=—Vpg, (10)

scale\. There are then two parameters of interest: the shal-

lowness or dispersion parametedefined as the ratio of the Whered;=d;+u-V. Note that this equation contains terms of

representative depth to the typical horizontal scale, and  different orders ing®. In an attempt to vertically integrate

the nonlinearity parametes defined as the ratio of typical this equation, we proceed as follows. In the lirit-0, the

amplitudeA of a wave to the deptl. Since we are inter- Vertical momentum equation, E¢6b), yields

ested in a reduced-dimension description of shallow fluid _

systems, the shallowness parametes a convenient small Po(2)=b+7=2, (1)

parameter for the analysis. i.e., the pressure is hydrostatic. We assume the constant pres-
We nondimensionalize the various quantities as followsssyre at the free-surfac@, in Eq. (3b) equals zero in this

paper. Further, if the initial conditions are such that,=0,

A
X=Ax*, z=Dz*, n=Dn%n*, b=Db*, t=c—t*, then from Eq.(10) and Eq.(9b), d,u,=0 for all times. In
0 . such a case, vertical integration of EG0) from b to b+ »
U=CoU*, wW=0aCow*, and p=p,c3p*, ®  yields
whereco= gD is the long gravity wave speed correspond-  d,u,=—V(b+ 7). (12)

ing to the depttD, and the nondimensionalization wftakes o
into account Eq(2). Rewriting Eq.(1a), Eq.(1b) and Eq.(2)  Equations(8) and (12) (with u=ug), which constitute the
after dropping the asterisks, the nondimensional Euler equdeading-order approximation in the shallowness parameter
tions are (0—0) are the classical shallow water equations.

Next we consider the remainder of the horizontal mo-

diu+wdu=—Vp, (68 mentum equation: AO(o2) we have
Uz(dtW+W(92W): _azp_l' (6b) dtul+W&ZU1: _Vpl (13)
V-u+a,w=0. (7)

Note that in any of the equations that appeaDét-?), we

Here|u| is the spatially and temporally varying Froude num- can replaceu by u andd, by d, while incurring an overall
ber based on the long gravity wave speégiD. Note that error of onlyO(c*). We vertically integrate Eq13) from b

this nondimensionalization does not assume the Froude nunw b+ #:
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S 1 —
du=—gV(b+7)- pu (V(7p1) +p1(b)Vb) +O(0?).
(22

Here, »p, and p,(b) are given by Eq(21) and Eq.(20),
respectively, but now in the dimensional variables. It is
worth noting here that at the initial instagnd therefore at
all later timeg, the horizontal velocity has been assumed to
be z-independent at the leading ordény,=uqy(x,t), but
u;=u;(x,z,t) in Eqg. (9b)]. The equation$22) and(8), result-

or ing from such a near-columnar motion are called the level-I
Green-Naghdi equations.

b+n —
f [diu;+wd,u,]dz
b

= 3y( puy) — uy(b+ 1) (b+ 1) + uy(b)db+u- V(7uy)
—uy(b+ 7)[u-V(b+ 7)]+uy(b)[u-Vb]
+[wuy 15" 7+ puy(V-u)+O(o?)

= 7diu;+0(a?),

7diU; = —V(7p1) — p(b)Vb+O(a?). (14)

C. The generalized-Boussinesq equations
To determine the nonhydrostatic pressure tepp) - .
and p, in the above equation, we use the remainder of the In _denvmg the GN equathnéabove, we made no as-
vertical momentum equation, E¢sb), which atO(o?) is sumptions about the nonlinearity paramegef o restrict the
' ' GN equations to the weakly nonlinear regime, we assume

6<1, i.e., the deviation from equilibrium of the free surface
and the deviation of the flow velocity from the ambient are
both small. In particular, we assume the Boussinesq balance
5=0(0?). To be consistent with this assumption that the
response is small, we must assume that the bottom topogra-
phy (forcing) is also small:b=0(6). Since the dispersive

dw+wad,w=—3d,p. (15

Since this equation is already@{ o), we can again replace
u by u andd, by d,, incurring an overall effective error only
of O(¢*). Vertically integrating the continuity equation, Eq.
(7), from b to an arbitrary height gives an expression for

the vertical velocityw as
W(x,z,t)=db—(z—b)V-u+O(0?). (16)

Then vertically integrating Eq15) from an arbitrary height

z to the free-surfacé+ z, and making use of the boundary

conditions Eq(3b), Eq. (3a), and Eq.(4),

bt+n — _

|01(X,Z,t)=fz [di(dib—(z=b)V-u)
—(dib—(z—b)V-U)V-u+0(0?)]dz

b+7n — _ — -
=J [db+(z—b)((V-Uu)2—dy(V-))

z

+0(0?)]dz (17
But from Eq.(8),
(VTP G(V-T=— - AV T, a9
and so
— 1
p1(x,z,t)=(b+ n—2)d,"b— >, [7°—(z—b)?]
n
Xd(7V-u)+0(o?). (19)

Therefore, the nonhydrostatic terrpg(b) and 7p, in Eq.
(14) are

— 1
pl(b)=nthb—§ nVﬁ, (20)
{11
7P1= 7" 5 dib— 3 #V-ul. (21)

Adding o? times Eq.(14) to Eq. (12), and rewriting in
the dimensional form, we get

Phys. Fluids, Vol. 8, No. 8, August 1996

terms in Eq.(22) are of higher order than the classical shal-
low water terms, we can linearize those dispersive teges
Appendix A). The resulting momentum equations are

- n _
du=—gV(b+7)+ 5 D(VV- (7o)

2
- 2 DYV U], 29
where 7, is the undisturbed depth of the fluid lay@ssum-
ing a flat free surfage and whiled,=d,+u-V as before, we
have now introduced the linear derivatii@,=g,+U-V,
whereU is the constant ambient flow velocity. These are the
usual gB equations for variable bottom topography, pre-
sented here in a frame in which the topography is fixed—a
frame natural for the problems in which we are interested.

lII. COMPARISON OF THE DSW SOLUTIONS TO THE
EULER SOLUTIONS

In this section we compare the GN and the gB solutions
against the Euler solutions for three different cases. The
simulated problem in each case is the flow over a two-
dimensional ridge, with the different cases representing dif-
ferent choices of Froude number and the height of the ridge.
In all the three cases, the ridge has the form

b(x)=b(1+]|x|?/L?) 15 (24)

with the half-width parametdr set to 1.0. The height of the
ridge is changed by varying,. .

Cases 1 and 2 are designed to challenge the GN theory.
In case 1 the ridge height is a large fraction of the total layer
thickness b.=0.65). In case 2, the incoming velocity is
critical (i.e., F,=1.0). Finally in case 3, the height of the
ridge is reduced to 0.2 to make it closer to the range of
validity of the assumptions going into deriving the gB ap-
proximation.
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A. Case 1

We begin with the example of a ridge with dimension-
less height.=0.65 in a flow whose undisturbddpstream
Froude numbefF ,=0.7. The nondimensional amplitude of
the first upstream-propagating solitary wave in the full Euler
solution(see the description belguor this case at time 30 is
~0.7. Since the nondimensional height of the ridge and the
amplitude of the solitary wave is so large, one might expect
poor predictions from a vertically-integrated theory. The
comparisons detailed below, however, indicate that is not the
case and that the GN equations are able to predict both the
amplitude and the time of formation of the solitary waves
reasonably well, reiterating the nonasymptotic nature of the
GN theory in the nonlinearity parametér(We note that the g
GN equations were derived in section Il from an asymptotic
expansion of the Euler equations in only the shallowness™ l_
parameter, with no assumptions being made about the non- %
linearity parametes.)

In the present two-layer Euler computatitsee Appen- FIG. 2. F,=0.7 andb,=0.65.Snapshots of the Euler solutions at 10, 20,

dix B 1), the density of the upper layer is one hundred times;ng 30 time units after the start of the flow. The ratio of the density of the

smaller than that of the bottom layer. For numerical reasonsoewer layer to the upper layer is 100. The three iso-density contours are at

we smooth the density transition between the Iaﬁrrshe 0.105, 0.505, and 0.905 times the density of the lower layer. The instanta-
. . neous velocity field is indicated by the arrows. All length scales are nondi-

form of a hyperbOIIC tangent proflle, EQBS)]' The UPPET  ensionalized by the undisturbed fluid depth in this and all the following

layer is initially twice as thick as the bottom layer and thefigures.

top of the upper layer is a rigid lid. The second-order accu-

rate numerical algorithf is based on semi-Lagrangian

nonoscillatory forward-in-time method$2* The restoring .. . L .
time methods and use semi-Lagrangian integrations along

boundaries minimize reflection of waves generated within, . : : . ;
the computational domain and insure steady inflow. In thzfIUId trajectories(see Appendices B 2 and B.3rhe disper-

. . sive terms introduce new issues in the numerical approxima-
Euler computation we used a horizontal cell size of 5/64 : bp
. . : tions. Although these terms can be shown to be small based
and a time step of 2/64All lengths in the computations are . - T
) . . ) . on scale analysis, an explicit approximation is stable only
in units of representative water depth and the time is in

i t/D7g.) Fi 5 sh i ¢ " under further severe restrictions of the computational
erms o g.) Figure 2 shows a time sequence of resu Stimestep. We postpone a discussion of these issues to Appen-

from t_he Euler_simulat_ion at times 10, 20, _a_nd 30. The plotsyiy g The problem configurations for the GN and gB mod-
contain three isopycnic contours- at densities values 0.10%5 are exactly the same as the lower layer of the Euler com-
0.505, and 0.905 times the density of the lower laj&he 1 tation. The calculations are now one-dimensional, and the

_density of the IOWt_ar Iayer i_s used as the referen_c_e depsity top and bottom boundary conditions are part of the equations
in the nondimensionalization; see E®).] In addition, the themselves.

instantaneous velocity field is indicated by arrows. While the |, Fig. 3, we compare the 0.505 density contour from the
generation of a train of upstream-propagating solitary wavegjer solution with the GN solution at the same three times.
is clear, the high level of irregular activity downstream of the The continuous line is the GN solution and the heavy broken
ridge may only be interpreted as indicative of physical wavgine is the Euler solution. The gB solution is also shown at
breaking. We do not consider the Euler solutions in thisthe |ast time(time 30 in a lighter broken line for later ref-
downstream region in our comparisons, since after wavegrence. The GN solutions predict the amplitude of the train
breaking, viscous mechanisms are important. However, tgs upstream propagating solitary waves very closalyerror
address issues of implicit numerical viscosity of the Eulergf |ess than 5% however the GN solitary waves are gener-
solver, the same problem was repeated with a spatiallyted slightly earlier than is predicted by the Euler equations.
fourth-order accurate method—a method with lesser impliciBased on our experience with this flow, we attribute this
viscosity?>** While the upstream solutions were visually difference in part to the fact that the Euler equations use two
identical but for a slightly reduced spreading of the isopyc-ayers of the fluid with a density ratio of a 108s mentioned
nals in the case of the fourth-order scheme, we found differpreviously, while the density ratio assumed in the GN
ences only on small scales in the region of breakdown of theheory is infinite. The GN equations fail to represent the flow
flow, downstream of the ridge. This indicates the relativelycorrectly in the downstream side other than that they predict
inviscid nature of the upstream solution and a dependence ahe correct minimum of the fluid surface behind the ridge.
implicit viscosity of only the small scale features of the so-This is, however, only to be expected since the cnoidal
lution in the region of breakdown of the flo@ownstream of waves that develop in the lee of the ridge cannot break in the
the ridge. GN computation, but do in the Euler equation computation.
The GN and gB models are also based on forward-in-That is, by the very nature of the approximation, the break-
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FIG. 3. F,=0.7 andb,=0.65. Acomparison of the GN solutions at times F!G. 4. F,=1.0 andb.=0.4. TheEuler solutions at times 10, 20, and 30.
10, 20, and 30 with the 0.505 density contour of the Euler solutions. Thel he density ratio of the lower layer to the upper layer is 1000. The format of

heavy broken line is the Euler solution and the smooth continuous line théhe picture is the same as in Fig. 2. Note the breaking of the first upstream-
GN solution. At time 30, the gB solution is shown in a lighter broken line. Propagating solitary wave at time 30.

ing of waves is excluded in any of the reduced dimensiorlations noted in case 1. However the larger ratio also entails
shallow water descriptions. It remains to be verified whethe@reater computational expense. In particular we had to set a
the waves that develop in the GN calculation have the saméghter convergence level in the elliptic solver increasing the
wavelength as those that break in the Euler calculation. ~humber of iterations, and also the timestep had to be reduced

Although a ridge height of 0.65 puts it far outside the @s the computation progressed.
range of validity of the gB approximation, we present the g8 Shapshots of the two-dimensional Euler computation are
solution at time 30 in Fig. 3lighter broken ling. The am-  shown at times 10, 20, and 30 in Fig. 4. The format is the
plitude of the solitary waves is much larger and these wave§ame as in Fig. 2, but now the three isopycnals are plotted
are produced much earlier in the gB approximatio'me for denSity values of 01005, 05005, and 0.9005 times the
amplitude of the first solitary wave is in error by about 35%. density of the lower layer. The breaking of the first
Also the depressed region on the downstream side has aklPStream-propagating solitary wave is evident at time 30,
vanced much farther and there are some spurious oscillatior$ld as before, the downstream waves have broken after time
near the first wave of the lee-side wavetrain. Despite thesé0-
differences, it should be remarked that the gB approximation ~The comparison of the 0.5005 density contour of the
provides a fair prediction for this set of parameters, which lieEuler solutions with the GN solutions at times 10, 20, and 30
outside the range of validity of the assumptions made in itdS Shown in Fig. 5. In that figure, the jagged heavy broken
derivation. lines are the Euler solutions, the smooth continuous lines are
the GN solutions, and the gB solutions are plotted as lighter
broken lines. The comparison between the Euler solutions
and the GN solutions on the upstream side, i.e., the ampli-

In case 2, the flow is critical meaning thia;=1.0, and tude and speed of the upstream-propagating solitary waves
the ridge heightb,, is chosen equal to 0.4. From the Euler and their time of formation is excellent up to time 30, when
solutions, we know that the first upstream-propagating solithe Euler solution is beginning to show signs of breaking. As
tary wave begins to break by time 30 for this choice of pa-in the previous case, the height of the depressed region
rameters and hence this case provides another severe testwnstream of the ridge is very nearly the same in the Euler
case for the GN equations. and GN solutions.

The Euler simulation for case 2 is similar to that of case  As in case 1, at a ridge height of 0.4 in case 2, the gB
1 excepting that the density ratio of the lower to the upperequations predict a larger amplitude of the upstream propa-
layer is set to 1000:1 as opposed to the 100:1 ratio used igating solitary waves and an earlier time of formation. In this
the previous case. This larger value of the density ratio wasase, the amplitude of the first solitary wave is overpredicted
chosen to test the sensitivity of the comparison between they about 35%. There is better correspondence between the
Euler and the shallow water theories where the ratio is infigB and GN solutions on the downstream side though the
nite. The larger density ratio in the Euler simulations doesamplitudes of the gB waves are much larger. Interestingly,
significantly reduce the small discrepancies between thlowever, the shape of the Euler solitary wave seems closer
speed and amplitude of the solitary waves in the two simuto the gB representation than to the GN representation. In

B. Case 2
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25k It is interesting to compare the downstream waves gen-
20f Time=10 erated in the gB and GN simulations. The initial transient
g wave that moves downstreafmot shown is exactly the
same in the two solutions. This agreement, as well as the
close correspondence between the cnoidal waves far down-
stream(outside the window of presentation in this figuie

256 due to the fact that these are linear features of the DSW
theories and are progressing over a flat bottom. We note that
for the GN equations to go over to the gB equations, in
addition to a linearization of the dispersive terms, it is nec-
essary to make assumptions about the size of the bottom
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20 -10 0 10 0 topography. A noticeable difference between the two solu-
25F *H . tions is the larger amplitude of the cnoidal waves just down-
) 20F £ Time=30 E stream of the depressed region of fluid behind the ridge and
I Lsg N E the slightly shorter wavelengths of these waves in the gB
£ 10 E solutions.
oo N E The comparisons between the Euler solutions and the
20 -10 X(}H 10 20 GN solutions in the above three cases demonstrate convinc-

ingly the utility of the GN equations for accurately predicting
FIG. 5. F,=1.0 andb,=0.4. A comparison of the GN solutions at times Vertically-averaged features of a nonhydrostatic flow with
10, 20, and 30 with the 0.5005 density contour of the Euler solutions. Thdarge nonlinearities. Further, from the above test cases, we
jagged heavy broken line is the Euler solution and the continuous smoot ; ot
line is the GN solution. The gB solution is shown in lighter broken lines. QonCIUde that the 9B theory IS quantltatlvely adequate Only
when the bottom topographies are less than about 20% of the
undisturbed water depth. This is in agreement with Lee,
general, the GN solitary waves tend to be wider than thérates, and Wd? who found that the solutions of the gB
Euler solitary wave. equations agreed with tow-tank experiments for bottom to-
pographies of about 15% of the undisturbed water depth.

C. Case 3
IV. COMPARISON OF THE SW SOLUTIONS TO THE

In case 3, we choose the undisturbed Froude number &SW SOLUTIONS
In case Z’F“:.l'o’ bUt. reduce the height of the nqgu_% 0 In the SW regime diagram of Fig. 1, there are four dis-
0.2 so that this case is closer to the range of validity of the[. o . . X .
L . . inct regions: Region | where the flow is entirely subcritical,
gB approximation than is case 2. The mesh and timestep for

both the GN and gB simulations are the same, and are iderlql'e%\llﬁre]rle” ;/\r/]f;?éei;hzgloglv ;frggg?lgosipz?:t'cs . d?ggli::egllj?:
tical to those used in cases 1 and 2. For the Euler run, we use P propagating ny Jump

a density ratio between the lower and upper layers of 1000:1and a I_ee-s.|de hydrauhc Jump. Region .” IS d|V|ded_ Into two
similar to case 2. Subregions: region lla where the lee-side hydraulic jump is

In Fig. 6, we compare the 0.5005 density contour fromstatlonary and region llIb wher.e the I.ee—S|de hydraulic jump
. . S propagates downstream. In this section we compare the SW
the Euler solutiongheavy broken jagged linawith the gB solutions with the GN and gB solutions in each of these four
solutions(lighter smooth broken lineand the GN solution 9

(smooth continuous lingor case 3. The snapshot is at time regimes. As representative of region Ilb, we consider case 2

40. We see that even at this small value of the ridge heigh(f“scl"SS(ad earlier, and for regions lla, 1, gnd lll, we introduce
the gB equations predict an earlier time of formation and alc;ases 4, 5, and 6, respectively, where in casb:4:0.50,
=0.45; case 5b.=0.15, F,=0.50; case 6:b.=0.40,

slightly greater amplitude for the upstream propagating soli-_"

tary waves. The GN solutions again compare better in am'—zuzz'oo' The SW solutiontdot-dashed lings the GN so-

plitude and time of formation of the solitary waves to thelunonS (continuous linel; and the gB solutionddashed

. . . lines for these four cases are presented in Fig. 7.
Euler solutions. The wider nature of the GN solitary waves ; : .
(compared to the Euler solitary wayds again evident As mentioned earlier, the SW theory differs from DSW
' theories by allowing the formation of discontinuities in the

form of hydraulic jumps where the gradients of various
guantities become infinite. After the formation of these hy-
draulic jumps, the solutions satisfy the SW equations only in
a weak sense. In particular, the numerical model requires
some dissipation of energy to regularize the solution and
avoid unphysical oscillations. This dissipation usually takes
the form of an artificial viscosity in numerical models, and is
XH either implicit in the differencing scheme or is added explic-
FIG. 6. F,=1.0 andb.=0.20. Snapshot at time 40 of the Eul§agged itly. The.secon.d_order a_ldaptive discret_e-ve_lqcity .n.]e:thoq dis-
heavy broken ling GN (continuous ling and gB(lighter broken ling so- cussed in Nadig&, provides one such implicit artificial vis-
lutions. cosity scheme to simulate the SW equations. We have found
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_ globally than just in the region of steep gradients it was
" 3 intended to resolve, and now the depressed region behind the
g o et 3 ridge grows with time(This is related to the nonlocal nature

’ of the DSW theorie$.The SW (i.e., 0—0) solution has a
stationary hydraulic jump on the lee side of the ridge, and the
GN solutions can be interpreted as having resolved this hy-
draulic jump into a train of waves, the leading edge of which
3 stands at about the location of the hydraulic jufege case 4
LILR AT in Fig. 7). Such an interpretation is however, not possible
—: with the gB solutions since the leading edge of the wave
os 0 " p ” p 3 train is now propagating downstream. We are thus faced
XH with a problem in the realization of the gB solutions, though
perhaps only from a computational point of view—without
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E gi: ‘ E the artificial dissipation, the calculation cannot be continued
E odF Cose 3 Time=180 3 and with the dissipation, the—0 limit is lost.

22 3 The qualitative differences between the SW solutions

-20 -12 -4 - 4 12 20 and the DSW solutiongthe GN and the gB solutiopgor

20F ] cases 2 and 4in Fig. 7) are attributable to the presence of
L 15 A Case 6, Timo=30 discontinuities in the SW solutions. What is striking, how-
g 10F S ever, is the trend of the SW equations in region Ilb of Fig. 1
z osf 3 (represented here by case 2, Figtd@predict a lower level of

0?2; ~ 4.\& m ;0 the free surface in the depressed region just downstream of

X/H the ridge and a higher levétompared to the average eleva-
- \utionidot-dashed finds th tion of the DSW solutionsin the region upstream of the
FIG. 7. A comparison of the SW solutiortdot-dashed lines the GN so- . . . . .

lutions (continuous lines and the gB solution&ashed linesfor four cases ”dge' Con5|der|ng onIy the reglon of the uniform depre;se_d
corresponding to the four regions of Fig. 1. Casé=1.00,b,=0.40,  shelf downstream of the ridge in case 2, the SW solution is in
time=30. Case 4:F,=0.45, b;=0.50, time=40. Case 5:F,=0.50,  error by at least 20%, noting that the GN solution for this
b.=0.15,time=180. Case 6&,=2.00,b,=0.40,time=30. Note that the has b ified . v by direct . to th
SW solutions overpredict the elevations and the depressions of the fre(éaSe as een_ ver 'e_ pr.eV|0usy y direct comparison 0 e

surface. full Euler solution. This difference between the GN solution
and the SW solution is at first sight disturbing. Since this

region is locally flat, it would seem that the contributions of

this method superior to either adding explicit artificial vis- € dispersive terms would have to be negligible here, im-
cosity to the semi-Lagrangian scheme or increasing the imPYing that the GN equations would have to predict the same

plicit viscosity by making the interpolation step of the semi- depression of the free surface as the SW equations. The
Lagrangian scheme nonosci”atory, i_e_, the level ofabove argument is however incorrect in view of the fact that

oscillation at a hydraulic jump is much smaller with the the DSW theories are nonlocal. A similar trend of overpre-
adaptive discrete-velocity method. The SW solutions for alldiction of the elevation of the free surface upstream of the
the cases were computed using this adaptive discreteidge and the depression of the free surface downstream of
velocity scheme. The samtex of 5/64D (as in the previous the ridge is evident in case @n Fig. 7) also. Finally for
Euler, GN, and gB computationsvas used in the SW cal- cases 5 and ee those cases in Fig, Though there are no
culations and the time step correspongled toa CFL number @fiscontinuities in the SW solutions, it is clear that there are
about 0.8. The errors in the SW solutions resulting from oursiill large dispersive corrections to the SW solutions. In fact,
numerical model, when compared to the asymptotlcalcl)y €Xthe SW solution in case 5 is qualitatively different from the
act values for the SW equations, are of the order of 1%. gy solution for that case downstream of the ridge. For
th V\ée const[der ef‘ related ng]ed of ther:netht(;d 2®°|Ut'°?,°£ases 5 and 6, the differences between the GN and the gB
€ gb equations for case =, the case whnere the SW equatiogg) ;jions are of the same nature as discussed earlier.
develop a stationary lee side hydraulic jurfgee Fig. 1 In : .

. ; ’ . The above comparisons between the SW solutions and
this case, it was necessary to introduce a certain amount ?F] DSW soluti indicate that when th disturbed
artificial dissipation in the code for the gB solution while € solutions Indicate tha W, en the undisturbed up-

gStream Froude number and the height of the bottom topog-

there was no such need for the GN solution. This dissipatio ) S i 8
resulted from making the interpolation step in the semi-faphy are such that discontinuities occur in the SW solutions,

Lagrangian solver nonoscillatory by adding donor cell fluxthey are regularized by dispersion in the DSW solutions.

corrections to the original centered differences. This wadVhile it is difficult to quantify this difference between the
done on arad hocbasis since there is no analytical theory to SW and DSW solutions, it is clear that the nonlocal nature of

indicate that the introduction of an artificial dissipation the DSW equations results in substantial quantitative correc-
would result in a weak solution of the gB equations. Furthertions to the SW solutions even in uniform regions like the
the introduction of such dissipation affects the flow moredepressed shelf downstream of the obstacle.
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usual shallow watefSW) equations constitute the leading-
order reduced dimension approximation derived from an as-
ymptotic expansion in the shallowness parameter and assume
3 hydrostatic balance. Nonhydrostatic terms at the next order
E restore the dispersive nature of the gravity waves and thus

Case 2, Time=90 3

o
wn

HEIGHT
—- =
o o
VL

0'.0100 50 0 50 100 lead to dispersive shallow watéPSW) models. Since these
20r XM _ model equations are obtained by a vertical-averaging proce-
sk Case 4, Time=00 dure, wave breaking and related phenomena cannot be incor-
E i E porated within this framework.
2 052_ In this paper we first compared the relative accuracies of
I E two DSW theories—the Green-Nagh@N) theory and the
-100 -50 0 50 100 generalized BoussineggB) theory—by making direct com-
LoE X . parisons to the full Euler solutions in three different cases
. osf 3 and then considered the relationship between the SW and
& osf Case 5, Time=180 ] DSW theories using three additional representative cases.
& oaf = Each set of equations were integrated numerically to solve

oo

)

T
|

the flow over a two-dimensional ridge. The DSW equations
are a singular perturbation extension of the SW equations,
and so required novel algorithmic formulatioftsscussed in
Appendix B.
We find that the GN equations predict important features
of the flow(excluding wave breakingccurately over a wide
E range of parameters. The gB equations capture qualitatively
-100 -50 0 50 100 the same features of the flow in all the regimes considered,
X although some of the cases were far outside of their asymp-
FIG. 8. The SW solutionédot-dashed lingsand the GN solutionécontinu-  totic range of validity. For the gB model to be quantitatively
ous lines for the same four cases as in Fig. 7. The only difference is that thecorrect, features of the bottom topography have to be less
ridges are now 10 times Wider_ than in Fig. 7. T_he dispersiv_e corr'ect_iqns arthan about 20% of the undisturbed fluid depth. For most of
now confined to cases for which the SW solutions have discontinuities. . . S
the cases considered, the SW solutions were qualitatively
incorrect. However this does not contradict the usefulness of
V. THE DISPERSIVE DIFFERENCES FOR VERY the SW approximations for many applications. The appear-
GENTLE TOPOGRAPHIES ance of the dispersive corrections to the SW equations as the
) . . highest-order derivatives leads to difficulties in quantifying
In Fig. 8, we present the SW solutioftot-dashed linés ¢ gifferences between the SW and DSW descriptions, but
and the GN solutiongcontinuous linesfor the same four o+ nymerical simulations seem to indicate that the DSW

cases as in Fig. 7, but now with the ridge in each of the casegy)ions converge in a weak serfse., averaging over the
being 10 times wider than in Fig. 7. The agreement betweefgjationg to the SW solutions in the limit of very wide
the SW solutions and the GN solutions is almost perfect fo'iopographical features.

cases 5 and 6, and it is clear from cases 2 and 4 that for these

very gentle bottom topographies, the differences between the

SW solutions and the DSW solutions are mainly related tdA‘CKNOWLEDGMENTS
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the average over the oscillation® the SW solutions in the

limit of extremely wide topographical features. APPENDIX A: LINEARIZATION OF THE DISPERSIVE
TERMS

HEIGHT

VI CONCLUSIONS Since no assumptions are made about the size of the

Reduced dimension descriptions of inviscid shallownonlinearity in the derivation of the Green-Naghdi equations,
fluid flows are easier to simulate than the full three-the resulting dispersive terms there are nonlinear. In this ap-
dimensional Euler equations. Such descriptions have begmendix, we show how a linearization of the dispersive terms
derived at several different levels of approximation. Theleads to the dispersive terms of generalized-Boussinesq
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equations. For simplicity, considering stationary bottom to-
pographies, the dispersion terms in the GN equations are

1 >, (1 1
ZV 75 Ay 3 ﬂ*V-U*—EU*-Vb*
1
+dt(§ n*V~u*—u*~Vb*)Vb*, (A1)

whereb, =b/D, 5, =»/D, andu, =u/c,, i.e., no assump-
tions have been made on their sizes. If the nonlinearity i

assumed small, i.e., the deviations from the ambient Condideparture points

tions are of ordew<1, then
7, =1+ 0(8), u,=U+0(8)=V-u,=0(5),

b, =0(J). (A2)

In the above equatiott is the constant ambient velocity and &

no=1—b, is the depth of the undisturbed fluid layer. The
latter also implies thatV#7n,=0(8). Further, since
d;=dldt+u, -V, d,;=D;+0(6), whereD, is the linear de-
rivative 9/ dt+U-V. Inserting Eq(A2) in Eq. (A1), we have

1
—V +0(8%). (A3)
7o

, (1 1
7oD1| 3 70V U+ 5 u-Vo

Note in the above equation that the second term of(E&d)
makes no contribution at the leading order dnand that
there are stillO(5%) terms in the first term of Eq(A3).
Further manipulation of Eq(A3) under the same assump-
tions gives the linearized dispersion terms as

Y= (y+0.5AtF ¥),+ 0.5AtF |t

=", +0.5AtFY|N L, (B3)

Heren, i, andAt have the traditional meanings of the time
level, position on the grid, and the temporal increment, re-
spectively. The subscrift appearing at the first term on the
right hand side of Eq(B3) refers to ay field value at the
departure pointx,,t") of the trajectory arriving at the grid
oint (x; t"*1): here, it denotes an elaborate, second-order
ccurate, monotone, nonlinear interpolation algoriffifihe
are evaluated to second-order accuracy
by a two pass iteration of

n

t
Xo= X+ ftnﬂv(x,t)dt,

pproximated in the spirit of Adams-Bashforth schemes as
Xo=X— 0.BAt(vo+2v'—vP ), (B4)

following the mid-point algorithm in section 4 of Smolark-

iewicz and PudykiewicZ®> The elliptic pressure equation,

which follows from the incompressibility constraiB1c)

imposed on the discretized momentum equatiBia), is

solved using the method of conjugate residu@gy., see
Smolarkiewicz and Margolff’ for algorithmic details and
a further discussion

The model setups adopted for the simulations in section
Il are as follows. The ambient conditions assume the uni-

form ambient flow ofu,, and a density profile,

70 7% p°(z)=(1—o 5Ap 1+tan)‘((z_D)))) (B5)
- DU(VV-(70)) = & DYV -u). (A4) o ' *
with Ap either equal to 0.99 or 0.99@ =1, ande=2/64.
APPENDIX B: THE COMPUTATIONAL MODELS The bell-shaped hil(24) forms the lower boundary of the
1. Numerical model for the Euler equations model. The boundary conditions assumed are free-slip rigid-
' lid at both the top and bottom boundaries. At the lateral
We solve the incompressible Euler equations: boundariesu=u,, ; the gravity-wave absorbers near the lat-
eral boundaries attenuate the solution toward ambient condi-
dv 1 Po : . ; . . )
—_—=-C V¢—g( 1— _) vz, (Bla  tions with an inverse time scale that increases linearly from
dt p zero at the distance 26X~2D from the boundary to
dp (16At) "1~(3L/u,) ! at the boundary. The model domain
a=0, (Blb)  (x,z)e[—20D,20D]x[0,3D] is resolved with NXXNZ
=512%x96 uniform grid incrementa X=5/64 andAZ=2/
V.v=0, (Blc) 64. The initial condition is the potential flow past the hill in

where ¢ denotes the pressure perturbation from a hydrostati

po=po(2), g is the acceleration of gravity, and other vari-
ables have their usual meaning. Equatid®$) (cast in stan-
dard, nonorthogonal, terrain-following coordin&@sre in-
tegrated along flow trajectories on a discrete, regular,

Eq. (24). Details of the model performance in a similar flow

S
cally balanced environment characterized by a density profile

ituation may be found in Rotunno and Smolarkiewitz.

2. Numerical model for the Green-Naghdi equations

The presence of high-order time derivatives on the right

nonstaggered mesh using a second-order accurate semand side of the Green-Naghdi equations written in a La-
Lagranglan. f|n|.te glffe_rence approximation qf Smolarkiewicz grangian form complicates the semi-Lagrangian approxima-
and PudykiewicZ® Briefly, the model algorithm treats the tion of these equations. In the model that is used in the simu-

prognostic equation@B1a) and (B1b) in the symbolic form

dy
v

FY, (B2)

ations of section lll, the depth equation is solved explicitly

to obtain the new depth and then the momentum equations
are solved implicitly to obtain the new velocity fields. The

departure point is found to second-order accuracy as in Eq.
whose integral along a parcel trajectory assumes théB4), but now with the three-dimensional velocity field

trapezoidal-rule approximation,
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In what follows, we briefly present the modeling of the depthin the equation necessitate an implicit solution of the two-

equation and the momentum equations separately. dimensional velocity field. Manipulating the above equation
, to put it in a form more amenable to the semi-Lagrangian
A. The depth equation technique
With a provision for the restoring boundaries, the depth
equation, Eq(8), is now du da d
—=— +b)+2—Vy+np—Va+ .
dr 77 T V(n+b) Zdt Vg ndtVa nVu-Va
T 7V-u— . (B6)
dg u—u,
The instantaneous flow Jacobidmmeasures the rate of con- + dt Vb- r
traction or expansion of a parcel of flufd:
X A(X,y) All the terms in the above equation can be evaluated at the
= a_xoz m (B7) mid-point of the Lagrangian trajectorfgonnecting the grid

) ) _ ) oint at the advanced time level and the departure point at
and is evaluated following the departure point calculations othe known time leve| except the—7Vu-Va term. This

Eq. (B4). From the definition of the velocity divergeng®,  term, which is quadratic in thEu, is much smaller than the

dx 1dJ other three dispersive terms and is evaluated entirely at the
VousvV. ——=—-—. (B8)  departure point without significantly affecting the overall ac-
dt  J dt . . . I .
o _ curacy of the integrationThis has been verified by using a
Substituting Eq(B8) in Eq. (B6), predictor-corrector algorithm to evaluate the nonlinear term

at the mid-point of the parcel trajectoyyNow writing down

1d»nd -
T (B9) the mid-point integration formula for the above equation

J dt T over the particle trajectory results in
A mid-point integration(trapezoidal rulgover the parcel tra-
jectory T connecting(x,,ty) and(x;,t;) results in u—u, 1
——=—5 (V(b+n)+[V(b+ +(Vyp+[V
=—= + Ji, (B10)
At 2 T T _ 1 _
0 Qg B—Bo
o + = (Vb+[Vb]y) ——
where the Jacobian is calculated such that at the departure At 2 At
point J, is identically unity. Further manipulation of the 1 Va—[Va]
above equation leads to an explicit expression for the depth + > (m+ 1) A—t°+[7;Vu'Va]o
of the fluid layer at the arrival grid point at the new time
level: 1 U—u, |U—u,
-= —-— |, (B14)
B At 31 At B11 2\ 7 T,
n= 71—2—7(77—7751)0 — 5, (17 7a), (B11
rewritten for convenience as whereQ, indicates that the fiel@ is evaluated at the depar-

- ture pointx,. Since this equation is linear i, it may be
7+ ma(At/27) symbolically written as

T T (A2

(B12)

Z(u)=q,
B. The momentum equation

With the boundary restoring terms included, the momenwhere.# is the linear operator in E¢B14). The complexity

tum equation is of the linear operator and the fact that the field to be solved
du 1 da| dg U—u for above is two dimensional makes it quite cumbersome to
qic —V(np+b)+— V( 7? H) + Gt Vb— e put it in the matrix form: we solve it by the method of con-
U] T i i
(B13) jugate residuals.
where
1 1 3. Numerical model for the generalized-Boussinesq
“:<§ ”V‘U_EU'Vb>* equations

The departure point evaluation and the explicit solution
, of the depth equation proceed exactly as for the Green-
Naghdi equations. Only the discretization of the momentum
from Eg. (22). Note that although at this staggis known, equation, Eq(23), is different and is described below.
the right hand side is nonlinear in The dispersive terms in The gB momentum equations with the restoring terms
the above equation being the highest-order time derivativemcluded are

1
BZ(E nV-u—u-Vb
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du 7o 77% 5J. W. Miles and R. Salmon, “Weakly dispersive nonlinear gravity
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